Generation of human bronchial organoids for SARS-CoV-2 research
Abstract
Coronavirus disease 2019 (COVID-19) is a disease that causes fatal disorders including severe pneumonia. To develop a therapeutic drug for COVID-19, a model that can reproduce the viral life cycle and evaluate the drug efficacy of anti-viral drugs is essential. In this study, we established a method to generate human bronchial organoids (hBO) from commercially available cryopreserved human bronchial epithelial cells and examined whether they could be used as a model for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research. Our hBO contain basal, club, ciliated, and goblet cells. Angiotensin-converting enzyme 2 (ACE2), which is a receptor for SARS-CoV-2, and transmembrane serine proteinase 2 (TMPRSS2), which is an essential serine protease for priming spike (S) protein of SARS-CoV-2, were highly expressed. After SARS-CoV-2 infection, not only the intracellular viral genome, but also progeny virus, cytotoxicity, pyknotic cells, and moderate increases of the type I interferon signal could be observed. Treatment with camostat, an inhibitor of TMPRSS2, reduced the viral copy number to 2% of the control group. Furthermore, the gene expression profile in SARS-CoV-2-infected hBO was obtained by performing RNA-seq analysis. In conclusion, we succeeded in generating hBO that can be used for SARS-CoV-2 research and COVID-19 drug discovery.
Graphical abstract
<fig id="ufig1" position="float" fig-type="figure" orientation="portrait"><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="115600v2_ufig1" position="float" orientation="portrait"/></fig>Related articles
Related articles are currently not available for this article.