Meta-regression of COVID-19 prevalence/fatality on socioeconomic characteristics of data from top 50 U.S. large cities
Abstract
To screen potential risk and protective socioeconomic factors for Coronavirus disease 2019 (COVID-19) prevalence and fatality, meta-regression of data from top 50 U.S. large-population cities was performed. The population estimate (in 2019) of each country to which the city belongs was abstracted from the “County Population Totals: 2010-2019.” From the “Johns Hopkins Coronavirus Resource Center,” the cumulative number of confirmed cases and deaths of COVID-19 in each country was obtained on May 22, 2020. Socioeconomic characteristics of each country were extracted from the “2014-2018 American Community Survey (ACS) 5-Year Data Profile” and “Small Area Income and Poverty Estimates (SAIPE) Program (for 2018).” Radom-effects meta-regression was performed using OpenMetaAnalyst (<ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.cebm.brown.edu/openmeta/index.html">http://www.cebm.brown.edu/openmeta/index.html</ext-link>). A coefficient (slope of the meta-regression line) for COVID-19 prevalence was significantly negative for male sex, education attainment, computer and Internet use, and private health insurance. Whereas, the coefficient was significantly positive for black race, never matrimony, unemployment, and poverty. In the multivariable model, the coefficient was significantly negative for male sex (P = 0.036) and computer use (P = 0.024), and significantly positive for never matrimony (P < 0.001). A coefficient for COVID-19 fatality was significantly negative for no health insurance, and significantly positive for elderly, unemployment, and public coverage. In the multivariable model, the coefficient was significantly positive for only elderly (P = 0.002). In conclusion, a number of socioeconomic factors, e.g. male sex (negatively for prevalence), elderly (positively for fatality), never matrimony (positively for prevalence), and computer use (negatively for prevalence) may be associated with COVID-19.
Related articles
Related articles are currently not available for this article.