Srs2 binding to PCNA and its sumoylation contribute to RPA antagonism during the DNA damage response
Abstract
Activation of the DNA damage checkpoint upon genotoxin treatment induces a multitude of cellular changes to cope with genome stress. After prolonged genotoxin treatment, the checkpoint can be downregulated to allow cell cycle and growth resumption. In yeast, downregulation of the DNA damage checkpoint requires the Srs2 DNA helicase, which removes the ssDNA binding complex RPA and the associated Mec1 checkpoint kinase from DNA, thus dampening Mec1-mediated checkpoint. However, it is unclear whether the ‘anti-checkpoint’ role of Srs2 is temporally and spatially regulated to allow timely checkpoint termination while preventing superfluous RPA removal. Here we address this question by examining regulatory elements of Srs2, such as its phosphorylation, sumoylation, and protein-interaction sites. Our genetic analyses and checkpoint level assessment suggest that the RPA countering role of Srs2 is promoted by Srs2 binding to PCNA, which recruits Srs2 to a subset of ssDNA containing regions. RPA antagonism is further fostered by Srs2 sumoylation, which we found depending on the Srs2-PCNA interaction and Mec1, and peaking after Mec1 activity reaches maximal levels. These data suggest that Srs2 recruitment to PCNA proximal ssDNA-RPA filaments followed by its sumoylation can promote checkpoint recovery, whereas Srs2 action is minimized at regions with no proximal PCNA to permit RPA-mediated ssDNA protection.
Related articles
Related articles are currently not available for this article.