Evaluation of a Deep Learning and XAI based Facial Phenotyping Tool for Genetic Syndromes: A Clinical User Study

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Artificial intelligence (AI) tools are increasingly employed in clinical genetics to assist in diagnosing genetic conditions by assessing photographs of patients. For medical uses of AI, explainable AI (XAI) methods offer a promising approach by providing interpretable outputs, such as saliency maps and region relevance visualizations. XAI has been discussed as important for regulatory purposes and to enable clinicians to better understand how AI tools work in practice. However, the real-world effects of XAI on clinician performance, confidence, and trust remain underexplored. This study involved a web-based user experiment with 31 medical geneticists to assess the impact of AI-only diagnostic assistance compared to XAI-supported diagnostics. Participants were randomly assigned to either group and completed diagnostic tasks with 18 facial images of individuals with known genetic syndromes and unaffected individuals, before and after experiencing the AI outputs. The results show that both AI-only and XAI approaches improved diagnostic accuracy and clinician confidence. The effects varied according to the accuracy of AI predictions and the clarity of syndromic features (sample difficulty). While AI support was viewed positively, users approached XAI with skepticism. Interestingly, we found a positive correlation between diagnostic improvement and XAI intervention. Although XAI support did not significantly enhance overall performance relative to AI alone, it prompted users to critically evaluate images with false predictions and influenced their confidence levels. These findings highlight the complexities of trust, perceived usefulness, and interpretability in AI-assisted diagnostics, with important implications for developing and implementing clinical decision-support tools in facial phenotyping for rare genetic diseases.

Related articles

Related articles are currently not available for this article.