NAD⁺ Replenishment Mitigates Cardiomyocyte Senescence and Corrects Heart Failure with Preserved Ejection Fraction in Aged Mice
Abstract
Cardiomyocyte senescence, characterized by elevated cell cycle inhibitor expression, persistent DNA damage response, and mitochondrial dysfunction, contributes to myocardial stiffness and the progression of heart failure with preserved ejection fraction (HFpEF), the most common form of heart failure affecting individuals over 65. In this study, we investigated the role of NAD⁺ metabolism in cardiomyocyte senescence and cardiac function. Aged mice exhibited reduced cardiac NAD⁺ levels, impaired NAD⁺ biosynthesis and mobilization, and increased consumption, leading to suppressed SIRT1/6 activity and accumulation of senescent cardiomyocytes. This was accompanied by diastolic dysfunction consistent with HFpEF. In senescent AC16 cardiomyocytes, NAD⁺ depletion promoted senescence, which was reversed by the NAD⁺ precursors nicotinamide riboside (NR) and dihydronicotinamide riboside (NRH). In aged mice, two months of NR or NRH treatment improved diastolic function and reduced cardiomyocyte senescence. While NR primarily activated SIRT1 to suppress cell cycle arrest markers, NRH more robustly activated both SIRT1 and SIRT6, enhancing DNA damage repair. Acetylated H2AX, a SIRT6 substrate elevated in aged hearts and senescent cells, was selectively deacetylated by NRH. These findings identify NAD⁺ availability as a critical regulator of cardiac senescence and support NAD⁺ precursors, particularly NRH, as promising senescence-reducing therapies for treating aging-associated HFpEF.
Related articles
Related articles are currently not available for this article.