Sensory Entrained TMS (seTMS) enhances motor cortex plasticity
Abstract
Neural excitability fluctuates with sensory events, creating windows of opportunity to enhance brain stimulation. Repetitive transcranial magnetic stimulation (TMS), including intermittent theta burst stimulation (iTBS), is a promising treatment for neurological and psychiatric disorders, but does not account for fluctuations in neural excitability, likely contributing to variable outcomes. Sensory Entrained TMS (seTMS) leverages sensorimotor oscillations to enhance corticospinal responses, but the sustained effects as a repetitive protocol are unknown. We extend seTMS to iTBS, measuring motor-evoked potentials (MEPs) as a physiological readout. In a randomized crossover study comparing standard iTBS with sensory entrained iTBS (se-iTBS; n=20), we found that se-iTBS more than doubled the MEP effect (55% vs 26% MEP enhancement) and persisted for at least 30 minutes. Notably, at least 80% of participants showed larger responses with se-iTBS at all time points. se-iTBS may provide a robust and practical framework for optimizing TMS that bridges electrophysiological mechanisms and clinical applications.
Related articles
Related articles are currently not available for this article.