Long-read sequencing of single cell-derived melanoma subclones reveals divergent and parallel genomic and epigenomic evolutionary trajectories
Abstract
Tumor evolution is driven by various mutational processes, ranging from single-nucleotide vari- ants (SNVs) to large structural variants (SVs) to dynamic shifts in DNA methylation. Current short-read sequencing methods struggle to accurately capture the full spectrum of these genomic and epigenomic alter- ations due to inherent technical limitations. To overcome that, here we introduce an approach for long-read sequencing of single-cell derived subclones, and use it to profile 23 subclones of a mouse melanoma cell line, characterized with distinct growth phenotypes and treatment responses. We develop a computational frame- work for harmonization and joint analysis of different variant types in the evolutionary context. Uniquely, our framework enables detection of recurrent amplifications of putative driver genes, generated by indepen- dent SVs across different lineages, suggesting parallel evolution. In addition, our approach revealed gradual and lineage-specific methylation changes associated with aggressive clonal phenotypes. We also show our set of phylogeny-constrained variant calls along with openly released sequencing data can be a valuable resource for the development of new computational methods.
Related articles
Related articles are currently not available for this article.