Confinement Effects on the Melting of Hexagonal Ice in MoS2 Nanotubes: A Molecular Dynamics Study
Abstract
Using molecular dynamics simulations, we reveal how confinement in armchair MoS2 nanotubes alters the stability and melting points of hexagonal ice clusters. Ordered and hydrogen-disordered ice is studied inside and between nanotubes, showing a 30 K upward melting point shift for disordered interstitial ice due to hydrogen bond defects. The effects of nanotube diameter and ice impurities are quantified, highlighting MoS2’s potential in modulating phase transitions for applications in cryobiology and materials science.
Related articles
Related articles are currently not available for this article.