Federated Quantum Machine Learning for Distributed Cybersecurity in Multi-Agent Energy Systems
Abstract
The increasing digitization and decentralization of modern energy systems have heightened their vulnerability to sophisticated cyber threats, necessitating advanced, scalable, and privacy-preserving detection frameworks. This paper introduces a novel Federated Quantum Machine Learning (FQML) framework tailored for anomaly detection in multi-agent energy environments. By integrating parameterized quantum circuits (PQCs) at the local agent level with secure federated learning protocols, the framework enhances detection accuracy while preserving data privacy. A trimmed-mean aggregation scheme and differential privacy mechanisms are embedded to defend against Byzantine behaviors and data poisoning attacks. The problem is formally modeled as a constrained optimization task, accounting for quantum circuit depth, communication latency, and adversarial resilience. Experimental validation on synthetic smart grid datasets demonstrates that FQML achieves high detection accuracy (≥ 96.3%), maintains robustness under adversarial perturbations, and reduces communication overhead by 28.6% compared to classical federated baselines. These results substantiate the viability of quantum-enhanced federated learning as a practical, hardware-conscious approach to distributed cybersecurity in next-generation energy infrastructures.
Related articles
Related articles are currently not available for this article.