Manifold Topological Deep Learning for Biomedical Data

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Recently, topological deep learning (TDL), which integrates algebraic topology with deep neural networks, has achieved tremendous success in processing point-cloud data, emerging as a promising paradigm in data science. However, TDL has not been developed for data on differentiable manifolds, including images, due to the challenges posed by differential topology. We address this challenge by introducing manifold topological deep learning (MTDL) for the first time. To highlight the power of Hodge theory rooted in differential topology, we consider a simple convolutional neural network (CNN) in MTDL. In this novel framework, original images are represented as smooth manifolds with vector fields that are decomposed into three orthogonal components based on Hodge theory. These components are then concatenated to form an input image for the CNN architecture. The performance of MTDL is evaluated using the MedMNIST v2 benchmark database, which comprises 717,287 biomedical images from eleven 2D and six 3D datasets. MTDL significantly outperforms other competing methods, extending TDL to a wide range of data on smooth manifolds.

Related articles

Related articles are currently not available for this article.