High-performance gas-phase chiral enantiomer detectors based on chiral-induced spin selectivity effect

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The chirality-induced spin selectivity (CISS) effect is a state-of-art strategy for chiral detectability enhancement. For the first time, high-performance gas-phase chiral detectors based on the CISS effect were prepared using organic polymer, to address the challenges in accurately and portably detecting gas-phase chiral enantiomers in analytical chemistry. Here, a series of block copolymers poly(3-hexylthiophene)-block poly(phenyl isocyanate) (P3HT-PPI) were synthesized, combining a chiral helical structure and significantly improved electrical conductivity to regulate CISS effect by PPI ratio for precise, portable chiral recognition. P3HT80-PPI30 demonstrates exceptional spin polarization up to 70.8%. The gas enantiomer detector based on P3HT80-PPI30 exhibits excellent chiral distinguish capability of limonene enantiomers with current asymmetry factor up to 0.50, real-time detection, high reversibility, and linear concertation-dependence of response. An ‘electronic dichroism’ system based on the circuit combining chiral and achiral sensing elements, was developed for real-time visualization of limonene enantiomeric excess. Designing materials with CISS effect incorporating spin-polarized electrons in chiral enantiomer recognition and combing with conductive properties for converting chemical signals to electrical outputs, provides an effective strategy for the next-generation real-time, efficient detection of multiple chiral enantiomers.

Related articles

Related articles are currently not available for this article.